华泰金融工程 发布于 2020-02-06 16:25:06
摘要
本文介绍机器学习解释方法原理,以XGBoost选股模型为例揭开黑箱本文介绍六种机器学习模型解释方法的原理,并以华泰XGBoost选股模型为例,尝试揭开机器学习模型的“黑箱”。机器学习多属于黑箱模型,而资管行业的伦理需要可解释的白箱模型。除传统的特征重要性外,ICE、PDP、SDT、LIME、SHAP都是解释模型的有力工具。揭开选股模型黑箱,我们发现:1)价量类因子的重要性整体高于基本面类因子;2)XGBoost模型以非线性的逻辑使用因子,因子的非线性特点在市值、反转、技术、情绪因子上体现尤为明显。
目前人工智能算法的本质仍是样本拟合,直接使用模型结论可能有风险目前的人工智能算法,即使是近年来发展迅猛的深度神经网络,和线性回归并无本质上的不同,仍是对样本特征X和标签Y进行拟合,区别无非是机器学习模型的非线性拟合能力更强。人工智能并不具备真正的“智能”。模 (
点击阅读全文 )
→
免费下载App,立即成为ETF达人